基于BP神经网络伺服电机控制器的设计的文献综述
摘要
经典PID控制算法作为一般工业过程控制方法应用范围相当广泛,原则上讲它并不依赖于被控对象的具体数学模型,但算法参数的整定却是一件很困难的工作,更为重要的是即使参数整定完成,由于参数不具有自适应能力,因环境的变化,PID控制对系统偏差的响应变差,参数需重新整定。针对上述问题,人们一直采用模糊、神经网络等各种调整PID参数的自适应方法,力图克服这一难题。一般情况下,一个自适应控制电机能够运行,其相应的参数要适应现场状况的变化,因此就必须根据现场的数据对相应的参数进行在线辨识或估计。对非时变参数可以通过一段时间的在线辨识确定下来,但对时变参数电机,必须将这个过程不断进行下去,因此要求辨识速度快或参数变化速度相对较慢,极大地限制了自适应技术的应用。为克服这种限制,将神经网络的技术应用于参数辨识过程,结合经典的PID控制算法,形成一种基于BP神经网络的自适应PID控制算法。这一算法的本质是应用神经网络建立电机参数模型,将时变参数电机的参数变化规律转化为神经网络参数模型,反映了参数随状态而变的规律,即当电机变化后,可直接由模型得到电机的时变参数,而无需辨识过程。在神经网络参数模型的基础上,推导出一种自适应PID控制算法。通过在计算机上对线性和非线性系统仿真,结果表明了这种自适应PID控制算法的有效性。
关键词 BP神经网络,自适应PID控制算法,电机参数模型
Abstract
Classical PID control algorithm,as a general method of industrial process control,application scope is broad-ranged.In principle, it does not depend on the specific mathematical model of the controlled plant,but tuning algorithm parameters is a very difficult task.To more important,even if tuning the parameter is completed,as parameters do not have adaptive capacity,due to a change in environment,PID control of the response of the system deviation get worse,parameters need to be re-tumed.In response to these problems,people have been using the adaptive method of fuzzy,neural networks to adjust PID parameters,try hard to overcome this problem.Under normal circumstances,an adaptive control system can be capable of running,and the corresponding parameters should adapt to the change in status of the scene,so the corresponding parameters must be based on the data of the scene to conduct online identification or estimated.Non-time—varying parameters can be confirmed for a period of on-line identification,but the time-varying parameters system will be necessary to continue this ongoing process,so the requirement of fast identification or the relative slow pace of change of parameters,greatly limits the application of adaptive technology.To overcome this limitation,this paper uses the ideology of literature,the technology of neural network will be used in the process of parameter identification,combining classical PID control algorithm,forms an adaptive PlD control algorithm based on BP neural network.The essence of this algorithm applies neural network to build the model of system parameters,change the change law of the parameters of time-varying parameters systems into the Parametric model of neural network,reflecting the law that the parameters change with the state,that is,when the system changes,it can get the time-varying parameters of system from the model directly,without the process of identification.On the basis of me parameters model of neural network,derived an adaptive PID control algorithm.Through the simulation of linear and non-1inear systems in the computer,the result indicates that this adaptive PID control algorithm is effective.
Key Word BP neural network,Adaptive PID control algorithm,Motor parameter model
前言
以上是毕业论文文献综述,课题毕业论文、任务书、外文翻译、程序设计、图纸设计等资料可联系客服协助查找。