文献综述
1.对指导教师下达的课题任务的学习与理解
1.1课题研究背景及意义
数学是人类历史中发展最早,也是发展最为庞大的基础学科。许多人说数学是万理之源,因为许多学科的研究都是以数学做为基础,有了数学的夯实基础,人类才铸就起了众多学科的高楼大厦,所以数学的研究和发展一直在不断的发展壮大。在数学中有一支耀眼的分支,那就是矩阵。在古今矩阵的研究发展长河中产生了许多闪耀星河的大家。英国数学大家詹姆斯·约瑟夫·西尔维斯特,一个数学狂人,正是他的孜孜不倦的研究使得矩阵理论正式被确立并开启了矩阵发展的快速发展通道。凯莱和西尔维斯特是非常要好的朋友,他也是一位非常伟大的数学大师,正是他们伟大的友谊,加上两人的齐心协力最后他们共同发展了行列式和矩阵的理论。后来高斯在矩阵方面的研究取得重要的成就,尤其是高斯消去法的确立,加速了矩阵理论的完善和发展。
而在我国,矩阵的概念古已有之。从最早的数学大家刘徽开始我们古代数学大家都已或多或少的研究了矩阵。尤其在数学大家刘徽写的《九章算术》中,它最早提出了矩阵的类似定义。而且是将矩阵的类似定义用在了解决遍乘直除问题里了。这已经开始孕育出了最早的矩阵形式。
随着时间转移,矩阵的理论不断的完善,在对于那些大型矩阵的计算中如果用基本方法显得过于繁重,于是发展出了矩阵的分解,随着对矩阵分解的不断研究完善,矩阵分解方法和理论也日趋成熟。
矩阵经常被当做是数学工具,因为在数学问题中要经常用上矩阵的知识。矩阵是一个表格,要掌握其运算法则,作为表格的运算与数的运算既有联系又有差别,在所有矩阵的运算方法中,矩阵的分解是他们中一种最重要并且也是应用最广泛。矩阵分解主要是对高斯消去法的延续和拓展。在一些大型的矩阵计算中,其计算量大,化简繁杂,使得计算非常复杂。如果运用矩阵的分解,将那些大型矩阵分解成简单的矩阵的乘积形式,则可大大降低计算的难度以及计算量。这就是矩阵分解的主要目的。而且对于矩阵的秩的问题,特征值的问题,行列式的问题等等,通过矩阵的分解后都可以清楚明晰的反应出来。就连矩阵的奇异性也显而易见。在另一方面,对于哪些大型的数值计算问题,矩阵的分解方式以及分解过程也可以作为其计算的理论依据。
1.2 课题研究思路与内容
本课题从基本的矩阵分解以及其应用入手,分析矩阵的基本特征和几何意义,以及矩阵分解在数学本身求解和简化中的应用;然后结合国内外应用领域对矩阵分解的使用情况,研究其原理,并做出学术性报告;最后在了解矩阵分解的一些规律的情况尝试发现矩阵分解的未被发现的应用价值。
以上是毕业论文文献综述,课题毕业论文、任务书、外文翻译、程序设计、图纸设计等资料可联系客服协助查找。