常见室内木材宏观纹理的情感化研究文献综述

 2022-08-05 14:37:13

图像纹理特征的木材识别

Wood Recognition Using Image Texture Features

1College of Tianmu, Zhejiang Aamp;F University, Linrsquo;an, China, 2Hefei Institute of Intelligent Machines, Chinese Academy of Science, Hefei, China, 3Department of Automation, University of Science and Technology of China, Hefei, China, 4School of Information and Technology, Zhejiang Aamp;F University, Linrsquo;an, China

摘要

受到更高本地秩序自相关(HLAC)理论的启发,本文提出了一种简单,新颖,但非常强大的木材识别方法。该方法适用于木材数据库应用,这在木材相关工业和管理中非常重要。在特征提取阶段,从掩模匹配图像(MMI)中提取一组特征。 MMI功能保留从HLAC方法收集的掩码匹配信息。然后可以从统计和几何特征中精确地提取图像中的纹理信息。特别地,通过长度直方图实现更丰富的信息和增强的辨别能力,长度直方图是体现宽度和高度直方图的新的直方图。提出的方法的性能与使用木材立体图数据集ZAFU WS 24的最先进的HLAC方法进行比较。通过在ZAFU WS 24上进行广泛的实验,我们显示我们的方法显着提高了分类精度。

Abstract

Inspired by theories of higher local order autocorrelation (HLAC), this paper presents a simple, novel, yet very powerful approach for wood recognition. The method is suitable for wood database applications, which are of great importance in wood related industries and administrations. At the feature extraction stage, a set of features is extracted from Mask Matching Image (MMI). The MMI features preserve the mask matching information gathered from the HLAC methods. The texture information in the image can then be accurately extracted from the statistical and geometrical features. In particular, richer information and enhanced discriminative power is achieved through the length histogram, a new histogram that embodies the width and height histograms. The performance of the proposed approach is compared to the state-of-the-art HLAC approaches using the wood stereogram dataset ZAFU WS 24. By conducting extensive experiments on ZAFU WS 24, we show that our approach significantly improves the classification accuracy.

介绍

众所周知,木材是硬的纤维结构组织,构成林木的茎和根。森林约占世界陆地生物多样性的90%。他们通过储存碳,调节行星气候,净化水和减轻洪水等自然灾害来保护这种生物多样性的完整性[1]。此外,木材通过在连续的可持续循环中从太阳提取能量而自我更新[2]。在过去的几千年中,人类主要用木材作为燃料或建造文明物品,如房屋,工具,武器,家具,包装,艺术品和纸张。研究表明,从木材制造使用更少的能源,导致比钢铁和混凝土制造更少的空气和水污染。因为木材的特征和特性(包括外观,价格,物理和化学性质)变化很大,所以分类木材类型是直接工业应用的重要实际问题。木材分析有助于家具行业,木制板生产,甚至考古学,在那里他们是识别欺诈的关键[3]。然而,木材种类难以正确分类,因为木材组成是复杂的,而现有的种类是高度多样的[4]。

剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

以上是毕业论文文献综述,课题毕业论文、任务书、外文翻译、程序设计、图纸设计等资料可联系客服协助查找。